COHOMOLOGY OF QUASI-COHERENT SHEAVES ON AFFINE SCHEMES

JUNNOSUKE KOIZUMI

In this note we present two proofs of the following theorem.

Theorem 0.1. Let X be an affine scheme and F a quasi-coherent sheaf on X. Then we have $H^n(X, F) = 0$ for n > 0.

We write $F_U := j_*(F|_U)$ where $j: U \to X$ denotes the inclusion.

1. PROOF VIA LERAY SPECTRAL SEQUENCE

First we show that $H^1(X, F) = 0$. Suppose that there is an exact sequence $0 \to F \to G \to H \to 0$ in $\mathbf{QCoh}(X)$. Since $\Gamma(X, -) : \mathbf{QCoh}(X) \to \mathbf{Ab}$ is an exact functor, $\Gamma(X, G) \to \Gamma(X, H)$ is surjective and hence

$$H^1(X,F) \to H^1(X,G)$$

is injective. Therefore it suffices to find an appropriate G for each $\alpha \in H^1(X, F)$ so that the image of α in $H^1(X, G)$ vanishes. We cannot use the Godement resolution since G has to be quasi-coherent, but we can imitate it inside **QCoh**(X) as follows.

Take an open covering $\{U_i\}_{i=1}^r$ of X by fundamental open subsets so that $\alpha|_{U_i} = 0$. Consider the Leray spectral sequence

(1.1)
$$E_2^{p,q} = H^p(X, R^q j_{i*}(F|_{U_i})) \Rightarrow H^{p+q}(U, F|_{U_i})$$

where $j_i: U_i \to X$ is the inclusion. We see that the canonical map $H^1(X, F_{U_i}) \to H^1(U_i, F|_{U_i})$ is injective. Hence the image of α in $H^1(X, \bigoplus_{i=1}^r F_{U_i})$ vanishes and $G := \bigoplus_{i=1}^r F_{U_i}$ will do the job.

Now we proceed to the case $n \ge 2$. Suppose that there is an exact sequence $0 \to F \to G \to H \to 0$ in **QCoh**(X). By the induction hypothesis, $H^{n-1}(X, H) = 0$ and hence

$$H^n(X,F) \to H^n(X,G)$$

is injective. Therefore it suffices to find an appropriate G for each $\alpha \in H^n(X, F)$ so that the image of α in $H^n(X, G)$ vanishes. Again we will imitate the Godement resolution.

Take an open covering $\{U_i\}_{i=1}^r$ of X by fundamental open subsets so that $\alpha|_{U_i} = 0$. Consider the Leray spectral sequence (1.1). By the induction hypothesis, we have $H^p(X, F_{U_i}) = 0$ for $0 and <math>R^q j_*(F|_{U_i}) = 0$ for 0 < q < n. This implies that $E_2^{p,q} = 0$ for $0 and the canonical morphism <math>H^n(X, F_{U_i}) \to H^n(U_i, F|_{U_i})$ is injective. Hence the image of α in $H^n(X, \bigoplus_{i=1}^r F_{U_i})$ vanishes and $G := \bigoplus_{i=1}^r F_{U_i}$ will do the job.

JUNNOSUKE KOIZUMI

2. Proof via Čech cohomology

First we show that $\check{H}^n(X, F) = 0$ for n > 0. It suffices to prove $\check{H}^n(\mathcal{U}, F) = 0$ for any open covering $\mathcal{U} = \{U_i\}_{i=1}^r$ of X by fundamental open subsets and n > 0. We may assume that we can write X = Spec A, $U_i = D(f_i)$ and $F = \widetilde{M}$. Set $B = \prod_{i=1}^r A_{f_i}$. Then the Čech complex $\check{C}^{\bullet}(\mathcal{U}, F)$ is isomorphic to

$$M \otimes_A B \xrightarrow{d^0} M \otimes_A B \otimes_A B \xrightarrow{d^1} M \otimes_A B \otimes_A B \xrightarrow{d^2} \cdots$$

where

$$d^{k}(m \otimes b_{1} \otimes \cdots \otimes b_{k+1}) = \sum_{i=0}^{k+1} (-1)^{i} m \otimes b_{1} \otimes \cdots \otimes b_{i} \otimes 1 \otimes b_{i+1} \otimes \cdots \otimes b_{k+1}.$$

It suffices to show that

$$C^{\bullet} = (0 \to M \xrightarrow{d^{-1}} M \otimes_A B \xrightarrow{d^0} M \otimes_A B \otimes_A B \xrightarrow{d^1} M \otimes_A B \otimes_A B \otimes_A B \xrightarrow{d^2} \cdots)$$

is exact where $d^{-1}(m) = m \otimes 1$. Since *B* is faithfully flat over *A*, it suffices to show the exactness of $C^{\bullet} \otimes_A B$. However, $C^{\bullet} \otimes_A B$ has a chain contraction $\{h^k : C^k \otimes_A B \to C^{k-1} \otimes_A B\}_{k=-1}^{\infty}$ given by

$$h_k((m \otimes b_1 \otimes \cdots \otimes b_{k+1}) \otimes b) = (m \otimes b_1 \otimes \cdots \otimes b_k) \otimes b_{k+1}b$$

Now we deduce $H^n(X, F) = 0$ for n > 0 using the "Čech-to-derived functor" spectral sequence

$$E_2^{p,q} = \check{H}^n(X, \mathcal{H}^q(X, F)) \Rightarrow H^{p+q}(X, F)$$

where $\mathcal{H}^q(X, F)$ denotes the presheaf defined by $U \mapsto H^q(U, F)$. We use an induction on n. We have $E_2^{0,q} = 0$ for q > 0 since it injects to $\Gamma(X, \mathcal{H}^q(X, F)_{\operatorname{Zar}}) = 0$. We also have $E_2^{p,q} = 0$ for 0 < q < n by the induction hypothesis. Finally, we have $E_2^{p,0} = 0$ for p > 0 by what we proved above. These results show that $E_2^{p,q} = 0$ for p + q = n and hence $H^n(X, F) = 0$.

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

Email address: jkoizumi@ms.u-tokyo.ac.jp