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1. Simple algebras

Fix a field K and its algebraic closure K. A finite dimensional K-algebra A is called
simple if it has exactly two two-sided ideals, namely 0 and A. Note that if A is simple, then
any morphism from A to a non-zero K-algebra is injective. In particular, if f : A → B is a
morphism of K-algebras with A simple and [A : K] = [B : K], then f is an isomorphism.
We say that A is a division algebra over K if A× = A \ {0}.

Example 1.1. Define H to be an R-vector space with basis 1, i, j, k and define an R-algebra
structure on H by

i2 = j2 = −1, ij = −ji = k.

Then H is a division algebra over R since

(a+ bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2.

Example 1.2. Let D be a division algebra over K and n ≥ 1. We prove that Mn(D) is a
simple K-algebra. For any M = (mij)i,j ∈Mn(D) with mrs 6= 0, we have

EprMEsq = mrsEpq

where Ekl denotes the matrix whose (k, l)-component is 1 and other components are 0. Since
mrs is invertible, this shows that the two-sided ideal generated by M is the whole Mn(D).

Actually, any simple K-algebra is isomorphic to one given as in the above example.

Theorem 1.3 (Wedderburn). For any simple K-algebra A, there is a division algebra D
over K and n ≥ 1 such that A ' Mn(D). Moreover, D is uniquely determinied up to
isomorphism (we call D the division algebra associated to A).

Lemma 1.4. Let A be a simple K-algebra. Then there is a simple right A-module I such
that any finitely generated right A-module is isomorphic to I⊕r for some r ≥ 0.
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Proof. Take a simple right A-submodule I ⊂ A. Since A is simple, we have
∑

a∈A aI = A
and hence there is a surjection I⊕r → A of right A-modules for some r ≥ 1. Therefore, for
any finitely generated right A-moduleM , there is a surjection I⊕N →M of right A-modules
for some N ≥ 1. Since I⊕N is semisimple (i.e. finite direct sum of simple modules), so is
M . If M ' J1 ⊕ · · · ⊕ Js with Ji a simple right A-module, then there is a non-trivial
A-homomorphism I → Ji and hence I ' Ji. □
Proof of Wedderburn’s theorem. By Lemma 1.4 we have A ' I⊕n as right A-modules
for some n ≥ 1. Then A ' EndModA(A) ' EndModA(I

⊕n) ' Mn(EndModA(I)) and
D := EndModA(I) is a division algebra since I is simple. Since I in Lemma 1.4 is unique
up to isomorphism, so is D. □

Note that the class of simple algebras is not closed under tensor products over K. For
example, if L is a Galois extension of K of degree n, then L⊗K L ' Ln is not simple.

2. Central simple algebras

A K-algebra A is called central if its center C(A) is equal to K. A standard argument
shows C(Mn(A)) = C(A) for any K-algebra A. For a K-algebra A and its K-subalgebra
R, we define CA(R) = {a ∈ A | ∀r ∈ R, ar = ra}.

Lemma 2.1. Let A,B be K-algebras and R ⊂ A, S ⊂ B be K-subalgebras. Then we have
CA⊗KB(R⊗K S) = CA(R)⊗K CB(S). In particular, we have C(A⊗KB) = C(A)⊗K C(B),
hence if A and B are central then so is A⊗K B.

Proof. The inclusion CA⊗KB(R ⊗K S) ⊃ CA(R) ⊗K CB(S) is clear. To prove the in-
verse inclusion, we choose a K-basis {eλ}λ of B. Then any element c =

∑
λ aλ ⊗ eλ of

CA⊗KB(R⊗K S) commutes with r ⊗ 1 for r ∈ R, so we have aλ ∈ CA(R) and hence

CA⊗KB(R⊗K S) ⊂ CA(R)⊗K B.

Similarly we have
CA⊗KB(R⊗K S) ⊂ A⊗K CB(S)

and these imply the desired inclusion. □
Now we turn to the main subject of this note: central simple algebras (CSAs). Since

C(Mn(A)) = C(A), a simple K-algebra is central if and only if A 'Mn(D) for some central
division algebra (CDA) D. The next theorem shows that the class of CSA over K is closed
under tensor products over K.

Theorem 2.2. Let A,B be simple K-algebras. If B is central, then A⊗K B is simple.

Before proving this theorem, we need some preparation. Let D be a division algebra over
K, V a free left D-module with basis {eλ}λ and W ⊂ V a left D-submodule. A non-zero
element w =

∑
λ aλeλ ∈W is called primitive (with respect to {eλ}λ) if J(w) = {λ | aλ 6= 0}

is minimal among non-zero elements in W .

Lemma 2.3. In the situation above, we have the following.

(i) If w,w′ ∈W are primitive and J(w) = J(w′), then w = cw′ for some c ∈ D×.
(ii) As a left D-module, W is generated by primitive elements.

Proof.
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(i) Write w =
∑

λ aλeλ and w′ =
∑

λ bλeλ. Take λ ∈ J(w) and consider the element

w − aλb
−1
λ w′ ∈W . By the minimality of J(w), we get w − aλb

−1
λ w′ = 0.

(ii) For any non-zero element w ∈ W , we can choose a primitive element w′ so that
J(w − w′) ⊊ J(w). Repeating this for w − w′, we can express w as a sum of
primitive elements.

□

Lemma 2.4. Let V be a K-vector space and D a CDA over K. Then any (D,D)-submodule
of D ⊗K V is of the form D ⊗K V ′ for some K-subspace V ′ ⊂ V .

Proof. Take a K-basis {eλ}λ of V . Then D⊗K V has a basis {1⊗ eλ}λ as a left D-module.
Let W be a (D,D)-submodule of D⊗K V . By Lemma 2.3 (ii), it suffices to prove that any
primitive element w ∈W is of the form 1⊗ v. Write w =

∑
λ cλ ⊗ eλ. Then for any d ∈ D

we have

dw − wd =
∑
λ

(dcλ − cλd)⊗ eλ ∈W,

so the minimality of J(w) implies that cλ ∈ C(D) = K. □

Proof of Theorem 2.2. We have B 'Mn(D) for some CDA D over K and n ≥ 1. Then
A ⊗K B ' Mn(A ⊗K D), so it suffices to show that A ⊗K D is simple. Lemma 2.4 shows
that any two-sided ideal of A⊗K D is of the form I ⊗K D for some two-sided ideal I ⊂ A.
Since A is simple, it follows that A⊗K D is simple. □

Corollary 2.5 (Artin-Whaple). For any CSA A over K with [A : K] = n, the canonical
homomorphism of K-algebras

A⊗K Aop → EndVectK (A) 'Mn(K); a⊗ b 7→ (x 7→ axb)

is an isomorphism.

Proof. By Theorem 2.2, we see that A ⊗K Aop is simple. The claim follows from this and
[A⊗K Aop : K] = n2 = [Mn(K) : K]. □

Two CSAs A and B over K are called similar if the associated CDAs are isomorphic,
and write A ∼ B. In other words, we have A ∼ B if and only if

Mm(A) 'Mn(B)

holds for some m,n ≥ 1. Let Br(K) denote the set of equivalence classes of CSAs over K
with respect to this relation. By Theorem 2.2 and the Artin-Whaple theorem, we can define
an abelian group structure on Br(K) by

[A] + [B] = [A⊗K B], 0 = [K], −[A] = [Aop].

We call this group Br(K) the Brauer group of K.

Lemma 2.6. Let A be a K-algebra and L/K a (possibly infinite dimensional) field exten-
sion. Then the following are equivalent:

(i) K is a CSA over K.
(ii) L⊗K A is a CSA over L.
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Proof. First we prove (i) =⇒ (ii). We have A 'Mn(D) for some CDA D over K and n ≥ 1,
so L ⊗K A ' Mn(L ⊗K D). By Lemma 2.4, any two-sided ideal of L ⊗K D is of the form
L⊗K I for some two-sided ideal I ⊂ D. Since D is simple, it follows that L⊗K D is simple
and hence so is L⊗KA. Moreover, we have C(L⊗KA) = C(L⊗KD) = C(L)⊗KC(A) = L.

Next we prove (ii) =⇒ (i). Since C(L ⊗K A) = C(L) ⊗K C(A) = L ⊗K C(A), we have
C(A) = K. If A is non-simple, then L⊗KA is also non-simple, which is a contradiction. □

Hence we can define a group homomorphism RL/K : Br(K) → Br(L) by [A] 7→ [L⊗K A].
We define Br(L/K) to be its kernel. We say that a CSA A over K splits over L if [A] ∈
Br(L/K), i.e. L⊗K A is isomorphic to a matrix algebra over L.

Lemma 2.7. Any K-subalgebra of a division algebra over K is again a division algebra.

Proof. Let D be a division algebra over K and A its K-subalgebra. For any a ∈ A \ {0},
the K-linear map A→ A; b 7→ ab is injective. Since [A : K] <∞, it is surjective and hence
a is right invertible. A Similar argument shows that a is also left invertible. □

In particular, for any x ∈ D, the K-subalgebra K[x] of D generated by x is a field.

Theorem 2.8. If K is algebraically closed, then Br(K) = 0.

Proof. Let D be a CDA over K. For any x ∈ D, K[x] is a finite extension field of K and
hence K[x] = K. This proves D = K and hence the result. □

Let A be a CSA over K. Then K ⊗K A ' Mn(K) for some n ≥ 1 by Theorem 2.8. It
follows that [A : K] = n2 is a perfect square. A limit argument shows that A splits over
some finite extension L/K. Therefore we have

Br(K) =
∪

L∈ΦK

Br(L/K)

where ΦK is the set of finite extensions of K contained in K.

3. Centralizer theorem

Theorem 3.1 (Skolem-Noether). Let A,B be simple K-algebras and suppose that B is
central. Then for any two K-homomorphisms f, g : A→ B there is an inner automorphism
h : B → B such that the following diagram commutes:

A
f

//

g
  
AA

AA
AA

AA
B

h

��

B.

Proof. Via the isomorphism B ' EndModB(B), we see that giving a K-homomorphism
f : A → B is equivalent to giving an (A,B)-bimodule whose underlying right B-module is
B. Moreover, an inner automorphism B → B corresponds to an automorphism of B as a
right B-module. Therefore it suffices to show that two (A,B)-bimodules are isomorphic if
their underlying right B-modules are the same. This follows from Lemma 1.4 applied to the
simple K-algebra Aop ⊗K B. □
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Theorem 3.2 (Centralizer theorem). Let A be a CSA over K and B its simple K-subalgebra
with [B : K] = n. Then the following hold:

(i) There is a non-canonical isomorphism A⊗K Bop 'Mn(CA(B)).
(ii) [A : K] = [B : K][CA(B) : K].
(iii) CA(B) is simple.
(iv) CA(CA(B)) = B and C(CA(B)) = C(B).

Proof.

(i) E := A⊗K EndVectK (B) has two isomorphic K-subalgebras K⊗K B and B⊗KK.
By Skolem-Noether theorem, there is an inner automorphism h : E → E such that
the following diagram commutes:

K ⊗K B � � //

∼
��

E

h

��

B ⊗K K � � // E.

Then h induces an isomorphism between CE(K ⊗K B) = A⊗ Bop and CE(B ⊗K

K) = CA(B)⊗K EndVectK (B) 'Mn(CA(B)).
(ii) Taking dimK in (i), we get [A : K][B : K] = [B : K]2[CA(B) : K].
(iii) If CA(B) is non-simple, then Mn(CA(B)) ' CA(B)⊗K Mn(K) is also non-simple,

which contradicts (i).

(iv) Clearly we haveB ⊂ CA(CA(B)). However, we have [CA(CA(B)) : K] =
[A : K]

[CA(B) : K]
=

[B : K] by (ii), so the equality holds. Finally, C(CA(B)) = CA(B)∩CA(CA(B)) =
CA(B) ∩B = C(B).

□

We use this theorem to study splittings of CSAs. Let A be a CSA over K and L/K a
field extension contained in A. We say that L is a special subfield of A if L = CA(L) holds.
In this case A splits over L since

L⊗K A 'Mn(CA(L)) =Mn(L)

by (i) of the centralizer theorem, where n = [L : K]. The following theorem says that any
splitting occurs essentially in this way.

Theorem 3.3. Let A be a CSA over K and L/K a field extension contained in A. If A
splits over L, then there is a CSA B over K with A ∼ B such that B contains a special
subfield isomorphic to L. Moreover, such B is unique up to isomorphism.

Lemma 3.4. Let A be a CSA over K and L/K a field extension contained in A. Then the
following are equivalent:

(i) L is a special subfield of A.
(ii) [A : K] = [L : K]2.

Proof. Since L ⊂ CA(L), the claim follows from (ii) of the centralizer theorem. □

Proof of Theorem 3.3. The uniqueness of B follows from [B : K] = [L : K]2. Let us
prove the existence. Set [A : K] = n2 and [L : K] = d. Since A splits over L, we have

L⊗K A 'Mn(L) ⊂ EndVectK (L⊕n) =: R.
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Let us prove that B := CR(A)
op satisfies the required condition. First we see that B is a

CSA by the centralizer theorem. We have Aop ∼ Bop because

R⊗K Aop 'Mn2(CR(A))

by (i) of the centralizer theorem. Finally, L is a special subfield of B since

[B : K] =
[R : K]

[A : K]
=
n2d2

n2
= d2

by (ii) of the centralizer theorem. □

4. Existence of a separable splitting field

Theorem 4.1. Any CSA over K splits over some finite separable extension of K.

In other words, we have

Br(K) =
∪

L∈ΛK

Br(L/K)

where ΛK is the set of finite Galois extensions of K contained in K.

Lemma 4.2. Let D be a CDA over K and L/K a field extension contained in D. Then
the following are equivalent:

(i) L is a special subfield of D.
(ii) D splits over L.
(iii) L is a maximal subfield of D.

Proof. First we prove (i) ⇐⇒ (ii). We already know (i) =⇒ (ii). If (ii) holds, then D ⊗K L
is isomorphic to a matrix algebra over L. On the other hand, the centralizer theorem shows
that

D ⊗K L 'Mn(CD(L))

and that CD(L) is a CDA over L. Therefore we get L = CD(L), that is, (i) holds.
Next we prove (i) ⇐⇒ (iii). Suppose that (i) holds. If E/L is a field extension contained

in D, then we have E ⊂ CD(L) = L, so (iii) holds. Conversely, if (i) does not hold, then we
can form a non-trivial field extension L[x]/L contained D by choosing x ∈ CD(L) \ L. □

Lemma 4.3. Let D be a CDA over K. If D 6= K, then there is a non-trivial separable
extension L/K contained in D.

Proof. It suffices to show that if K[x]/K is purely inseparable for all x ∈ D\K then D = K.
We may assume that K is an infinite field of characteristic p > 0. Our hypothesis implies
Dpr ⊂ K for some r ≥ 1.

Now let XD be the ring scheme over K representing the functor

AlgK → Ring; R 7→ R⊗K D

and Z its closed subscheme representing R 7→ R⊗KK. Note that the underlying K-scheme

of XD is isomorphic to An2

K where [D : K] = n2. Since K is infinite, K-rational points are
dense in XD, so the morphism

(−)p
r

: XD → XD

factors through Z. Considering K-valued points we getMn(K)p
r ⊂ K and hence n = 1. □
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Proof of Theorem 4.1. Let D be a CDA over K and set [D : K] = n2. It suffices to
show that there is a separable extension L/K contained in D such that [L : K] = n. We
inductively construct pairs (Ki, Di) where Ki/K is a separable extension and Di is a CDA
over Ki such that K ⊂ Ki ⊂ Di ⊂ D, [Di : K][Ki : K] = n2. Set D1 = D and K1 = K.
Suppose that (Di,Ki) is defined. If [Ki : K] = n then we are done. Otherwise, there is a
non-trivial separable extension L/Ki contained in Di by Lemma 4.3. Then set Ki+1 = L
and Di+1 = CD(Ki+1). It is clear that this process terminates and hence we eventually get
a desired subfield. □

5. Brauer groups and Galois cohomology

Let K be a field and L/K a finite Galois extension with Galois group G. For any finite
dimensional K-algebra A, its base change L ⊗K A has a semilinear action of G given by
σ(x⊗ a) = σ(x)⊗ a.

Theorem 5.1 (Galois descent). A 7→ L⊗K A gives an equivalence of categories(
Finite dimensional

K-algebras

)
∼−→

(
Finite dimensional L-algebras
with a semilinear G-action

)
.

Corollary 5.2. A 7→ L⊗K A gives an equivalence of categories(
n2-dimensional CSAs over K

which split over L

)
∼−→

(
L-algebras isomorphic to Mn(L)

with a semilinear G-action

)
.

Let Bn(L/K) denote the set of isomorphism classes of objects in the category on the left.
We will describe this set by classifying semilinear G-actions on Mn(L).

First we note that the automorphism group of the L-algebra Mn(L) is PGLn(L) (acting
by g · x = gxg−1) by the Skolem-Noether theorem. Let mσ : Mn(L) → Mn(L) be the K-
linear map given by applying σ to each matrix components. Given a semilinear action of G
on Mn(L), we can write σ · x = mσ(gσxg

−1
σ ) for a unique gσ ∈ PGLn(L). The map

ϕ : G→ PGLn(L); σ 7→ g−1
σ−1

gives a 1-cocycle:

ϕ(στ) = ϕ(σ) · σϕ(τ).
Conversely, any 1-cocycle ϕ : G→ PGLn(L) defines a semilinear action of G on Mn(L) by

σ · x = mσ(ϕ(σ
−1)−1xϕ(σ−1)).

One can check that two cocycles give isomorphic actions if and only if they are cohomologous.
We have proved the following theorem.

Theorem 5.3. There is a canonical isomorphism ρn : Bn(L/K)
∼−→ H1(G,PGLn(L)) of

pointed sets.

Now we use the short exact sequence

1 → L× → GLn(L) → PGLn(L) → 1

of non-abelian G-modules. Since L× ⊂ C(GLn(L)), we get an exact sequence

H1(G,GLn(L)) → H1(G,PGLn(L))
δ−→ H2(G,L×).
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We have H1(G,GLn(L)) by Hilbert’s theorem 90 and hence we get a monomorphism

ιn : Bn(L/K)
ρn−→
∼

H1(G,PGLn(L))
δ
↪→ H2(G,L×).

Lemma 5.4. Let A and B be CSAs over K which split over L. Set [A : K] = m2 and
[B : K] = n2. Then ιmn([A⊗K B]) = ιm([A]) + ιn([B]).

Proof. One can easily check that ρmn([A⊗K B]) = ρm([A])⊗ ρn([B]), where ⊗ on the right
hand side is induced by the Kronecker product ⊗ : PGLm(L) × PGLn(L) → PGLmn(L).
Now consider the following commutative diagram with exact rows:

1 // L× × L× //

×
��

GLm(L)×GLn(L) //

⊗
��

PGLm(L)× PGLn(L) //

⊗
��

1

1 // L× // GLmn(L) // PGLmn(L) // 1.

This yields the commutative diagram

H1(G,PGLm(L))×H1(G,PGLn(L))
� � δ×δ

//

⊗
��

H2(G,L×)×H2(G,L×)

+

��

H1(G,PGLmn(L))
� � δ // H2(G,L×)

and hence the result. □
This lemma implies that the following diagram is commutative, where the vertical map

is given by [A] 7→ [Mn(A)]:

Bm(L/K) �
� ιm //

��

H2(G,L×)

Bmn(L/K).
* 


ιmn

77ooooooooooo

Since Br(L/K) '
∪

nBn(L/K), we get a monomorphism ι : Br(L/K) → H2(G,L×). More-
over, Lemma 5.4 implies that ι is a group homomorphism.

Theorem 5.5. ι : Br(L/K) → H2(G,L×) is an isomorphism.

Proof. It suffices to show that any element of H2(G,L×) comes from H1(G,PGLn(L)) for
some n ≥ 1. Let ψ : G × G → L× be a 2-cocycle. Let V be a L-vector space with basis
{eσ | σ ∈ G} and define an L-linear map ϕ(σ) : V → V ; eτ 7→ ψ(σ, τ)eστ . Then ϕ gives a
1-cocycle G→ PGL(V ):

ϕ(στ) = ϕ(σ) · σϕ(τ).
One can easily check that δ[ϕ] = [ψ]. □
Example 5.6. We have Br(R) = Br(C/R) ' H2(Gal(C/R),C×). Since Gal(C/R) is cyclic,
this is isomorphic to H0

T (Gal(C/R),C×) ' R×/NmC/R(C×) ' Z/2. Actually, one can check
that Br(R) = {[R], [H]}.
Example 5.7. For a prime power q and n ≥ 1, we have Br(Fqn/Fq) ' H2(Gal(Fqn/Fq),F×

qn).

Since Fqn is finite, we have h(F×
qn) = 1 and hence #Br(Fqn/Fq) = #H1(Gal(Fqn/Fq),F×

qn) =
1 by Hilbert’s theorem 90. Therefore Br(Fq) = 0.
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6. Brauer group of local fields

Let K be a non-archimedean local field with valuation vK . Let OK be the ring of integers
of K, mK its maximal ideal and k = OK/mK . We prove the following theorem.

Theorem 6.1. Br(K) = Br(Kur/K), i.e. any CSA over K splits over some finite unram-
ified extension of K.

Let D be a CDA over K and set [D : K] = n2. First we define a function vD : D →
Q ∪ {∞} by

vD(x) =
1

n2
vK(det(D

x·(−)−−−→ D)).

Lemma 6.2. The following hold:

(i) If L/K is a field extension contained in D, then vD|L = vL where vL is the unique
discrete valuation extending vK .

(ii) vD(xy) = vD(x) + vD(y).
(iii) vD(x+ y) ≥ min{vD(x), vD(y)}.

Proof.

(i) Set d = [L : K]. Then D can be regarded an L-vector space of dimension n2/d by
left multiplication, and hence for any x ∈ L we have

vD(x) =
1

n2
vK(det(L

x·(−)−−−→ L)n
2/d) =

1

d
vK(NmL/K(x)) = vL(x).

(ii) This is obvious from the definition.
(iii) By (iii) it suffices to prove vD(z) ≥ 0 =⇒ vD(1 + z) ≥ 0 for z ∈ D×. This can be

seen by applying (i) to K[z].

□

We define OD := {x ∈ D | vD(x) ≥ 0} and mD := {x ∈ D | vD(x) > 0}. Then OD is a
local OK-algebra with maximal two-sided ideal mD, and F := OD/mD is a division algebra
over k ([F : K] <∞ can be seen by lifting a basis). By Example 5.7, F is a finite extension
field of k. We define eD to be the positive integer satisfying vD(D×) = 1

eZ.

Lemma 6.3. If D 6= K, then [OD/mD : k] > 1.

Proof. Suppose that [OD/mD : k] = 1. Choose a uniformizer π ∈ OK , an element Π ∈ OD

with vD(Π) = 1/e and a system of representatives S ⊂ OK of k. Then ΠjπiS gives a system

of representatives of mei+j
D /mei+j+1

D where i ∈ Z≥0 and 0 ≤ j < e. Therefore any element
of OD can be written uniquely as

e−1∑
j=0

Πj

( ∞∑
i=0

πisij

)
(sij ∈ S).

It follows that K[Π] = D, which is a contradiction. □

Proof of Theorem 6.1. Suppose that D 6= K. By Lemma 6.3, we can choose an element
a ∈ F \k which is separable over k. Let a ∈ OD be a lift of a. Then K[a]/K is an extension
with a non-trivial residue field extension, so there is a non-trivial unramified subextension
L/K. An argument as in the proof of Theorem 4.1 shows that there is a special subfield of
D which is unramified over K. □


