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1. SIMPLE ALGEBRAS

Fix a field K and its algebraic closure K. A finite dimensional K-algebra A is called
simple if it has exactly two two-sided ideals, namely 0 and A. Note that if A is simple, then
any morphism from A to a non-zero K-algebra is injective. In particular, if f: A — B is a
morphism of K-algebras with A simple and [A : K] = [B : K], then f is an isomorphism.
We say that A is a division algebra over K if A* = A\ {0}.

Example 1.1. Define H to be an R-vector space with basis 1,1, j, k and define an R-algebra
structure on H by

i?=j>=—-1, ij=—ji=k.

Then H is a division algebra over R since

(a+bi+cj+dk)(a—bi—cj—dk) =a®+b*+c* 4 d>
Example 1.2. Let D be a division algebra over K and n > 1. We prove that M, (D) is a
simple K-algebra. For any M = (my;);; € M, (D) with m,, # 0, we have

EpMEy, = mys By,

where Ej; denotes the matrix whose (k, [)-component is 1 and other components are 0. Since
mys s invertible, this shows that the two-sided ideal generated by M is the whole M, (D).

Actually, any simple K-algebra is isomorphic to one given as in the above example.

Theorem 1.3 (Wedderburn). For any simple K-algebra A, there is a division algebra D
over K and n > 1 such that A ~ M, (D). Moreover, D is uniquely determinied up to
isomorphism (we call D the division algebra associated to A).

Lemma 1.4. Let A be a simple K-algebra. Then there is a simple right A-module I such
that any finitely generated right A-module is isomorphic to I®" for some r > 0.
1
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Proof. Take a simple right A-submodule I C A. Since A is simple, we have ) _,al = A
and hence there is a surjection I®" — A of right A-modules for some r > 1. Therefore, for
any finitely generated right A-module M, there is a surjection I®Y — M of right A-modules
for some N > 1. Since I®V is semisimple (i.e. finite direct sum of simple modules), so is
M. It M~ J & & Js with J; a simple right A-module, then there is a non-trivial
A-homomorphism I — J; and hence I ~ J;. O

Proof of Wedderburn’s theorem. By Lemma 1.4 we have A ~ I®" as right A-modules
for some n > 1. Then A ~ Endmoas(A4) =~ Endymoda(IP") ~ M, (Endymoda(l)) and
D := Endmoaa(I) is a division algebra since I is simple. Since I in Lemma 1.4 is unique
up to isomorphism, so is D. O

Note that the class of simple algebras is not closed under tensor products over K. For
example, if L is a Galois extension of K of degree n, then L ® x L ~ L™ is not simple.

2. CENTRAL SIMPLE ALGEBRAS

A K-algebra A is called central if its center C'(A) is equal to K. A standard argument
shows C(M,(A)) = C(A) for any K-algebra A. For a K-algebra A and its K-subalgebra
R, we define C4(R) ={a € A|Vr € R, ar =ra}.

Lemma 2.1. Let A, B be K-algebras and R C A, S C B be K-subalgebras. Then we have
Cag(R®Kk S) = Ca(R)®@K Cp(S). In particular, we have C(A®k B) = C(A)®k C(B),
hence if A and B are central then so is ARy B.

Proof. The inclusion Cag, (R ®x S) DO Ca(R) @k Cp(S) is clear. To prove the in-

verse inclusion, we choose a K-basis {ex}x of B. Then any element ¢ = ), ax ® ey of
CagxB(R®K S) commutes with r ® 1 for r € R, so we have a) € C4(R) and hence

Caprp(R®Kk S) C Ca(R) ®K B.
Similarly we have
CagB(R®K S) C A®k Cp(S)
and these imply the desired inclusion. O
Now we turn to the main subject of this note: central simple algebras (CSAs). Since
C(M,(A)) = C(A), a simple K-algebra is central if and only if A ~ M,, (D) for some central

division algebra (CDA) D. The next theorem shows that the class of CSA over K is closed
under tensor products over K.

Theorem 2.2. Let A, B be simple K-algebras. If B is central, then A @ B is simple.

Before proving this theorem, we need some preparation. Let D be a division algebra over
K, V a free left D-module with basis {e)}» and W C V a left D-submodule. A non-zero
element w = ), axex € W is called primitive (with respect to {ex},) if J(w) = {\ | ax # 0}
is minimal among non-zero elements in W.

Lemma 2.3. In the situation above, we have the following.
(1) If w,w’ € W are primitive and J(w) = J(w'), then w = cw’ for some ¢ € D*.
(ii) As a left D-module, W is generated by primitive elements.

Proof.



BRAUER GROUPS 3

(i) Write w = ", axey and w’ = >, byex. Take A € J(w) and consider the element
w— aAb/(lw' € W. By the minimality of J(w), we get w — a,\b)_\lw/ =0.

(ii) For any non-zero element w € W, we can choose a primitive element w’ so that
J(w —w') € J(w). Repeating this for w — w’, we can express w as a sum of
primitive elements.

O

Lemma 2.4. Let V be a K -vector space and D a CDA over K. Then any (D, D)-submodule
of D®K V is of the form D @k V' for some K-subspace V! C V.

Proof. Take a K-basis {ex}» of V. Then D ®g V has a basis {1®ey}, as a left D-module.
Let W be a (D, D)-submodule of D ® ¢ V. By Lemma 2.3 (ii), it suffices to prove that any
primitive element w € W is of the form 1 ® v. Write w = )", ¢x ® ex. Then for any d € D
we have
dw — wd = Z(dc)\ —cnd)@ey €W,
A
so the minimality of J(w) implies that ¢y € C(D) = K. O

Proof of Theorem 2.2. We have B ~ M, (D) for some CDA D over K and n > 1. Then
ARk B~ M,(A®k D), so it suffices to show that A @ x D is simple. Lemma 2.4 shows
that any two-sided ideal of A @ D is of the form I ® ¢ D for some two-sided ideal I C A.
Since A is simple, it follows that A @ D is simple. O

Corollary 2.5 (Artin-Whaple). For any CSA A over K with [A : K] = n, the canonical
homomorphism of K -algebras

A®K A°®° — Endvectx (A) =~ M, (K); a®bw— (x> axb)
is an tsomorphism.

Proof. By Theorem 2.2, we see that A ® g A°P is simple. The claim follows from this and
[A®x AP : K] =n? = [M,(K) : K]. O

Two CSAs A and B over K are called similar if the associated CDAs are isomorphic,
and write A ~ B. In other words, we have A ~ B if and only if

M, (A) ~ M, (B)

holds for some m,n > 1. Let Br(K) denote the set of equivalence classes of CSAs over K
with respect to this relation. By Theorem 2.2 and the Artin-Whaple theorem, we can define
an abelian group structure on Br(K) by

[A]+ [B] = [A®k B], 0=[K], —[A]=[A"].
We call this group Br(K) the Brauer group of K.

Lemma 2.6. Let A be a K-algebra and L/K a (possibly infinite dimensional) field exten-
sion. Then the following are equivalent:

(i) K is a CSA over K.

(i) L®k A is a CSA over L.
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Proof. First we prove (i) = (ii). We have A ~ M,,(D) for some CDA D over K and n > 1,
so L ®x A~ M,(L®g D). By Lemma 2.4, any two-sided ideal of L @ D is of the form
L ®k I for some two-sided ideal I C D. Since D is simple, it follows that L ® g D is simple
and hence so is L&k A. Moreover, we have C(L® g A) = C(L®k D) = C(L)®k C(A) = L.

Next we prove (i) = (i). Since C(L ®x A) = C(L) @k C(A) = L @ C(A), we have
C(A) = K. If Ais non-simple, then L ® g A is also non-simple, which is a contradiction. O

Hence we can define a group homomorphism Ry, x: Br(K) — Br(L) by [A] — [L®k A].
We define Br(L/K) to be its kernel. We say that a CSA A over K splits over L if [A] €
Br(L/K),ie. L ®k A is isomorphic to a matrix algebra over L.

Lemma 2.7. Any K-subalgebra of a division algebra over K is again a division algebra.

Proof. Let D be a division algebra over K and A its K-subalgebra. For any a € A\ {0},
the K-linear map A — A; b+ ab is injective. Since [A : K] < oo, it is surjective and hence
a is right invertible. A Similar argument shows that a is also left invertible. ]

In particular, for any = € D, the K-subalgebra K|[z]| of D generated by z is a field.
Theorem 2.8. If K is algebraically closed, then Br(K) = 0.

Proof. Let D be a CDA over K. For any € D, K|[z] is a finite extension field of K and
hence K[z] = K. This proves D = K and hence the result. O

Let A be a CSA over K. Then K ® A ~ M, (K) for some n > 1 by Theorem 2.8. Tt
follows that [A : K| = n? is a perfect square. A limit argument shows that A splits over
some finite extension L/K. Therefore we have

Br(K)= ] Br(L/K)
Led g

where @ is the set of finite extensions of K contained in K.

3. CENTRALIZER THEOREM

Theorem 3.1 (Skolem-Noether). Let A, B be simple K-algebras and suppose that B is
central. Then for any two K-homomorphisms f,g: A — B there is an inner automorphism
h: B — B such that the following diagram commutes:

A%B

RN

B.

Proof. Via the isomorphism B ~ Endpean(B), we see that giving a K-homomorphism
fi+ A — B is equivalent to giving an (A, B)-bimodule whose underlying right B-module is
B. Moreover, an inner automorphism B — B corresponds to an automorphism of B as a
right B-module. Therefore it suffices to show that two (A, B)-bimodules are isomorphic if
their underlying right B-modules are the same. This follows from Lemma 1.4 applied to the
simple K-algebra A°P @ B. |
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Theorem 3.2 (Centralizer theorem). Let A be a CSA over K and B its simple K -subalgebra
with [B : K] =n. Then the following hold:
(i) There is a non-canonical isomorphism A ® x B°P ~ M,,(C4(B)).

(ii) [A: K] =[B: K][Ca(B) : K].

(iii) Ca(B) is simple.

(iv) Ca(Ca(B)) = B and C(C(B)) = C(B).

Proof.

(i) E:= A®k Endvect, (B) has two isomorphic K-subalgebras K @ x B and B&k K.

By Skolem-Noether theorem, there is an inner automorphism h: £ — E such that
the following diagram commutes:

K®g B——F

Foo
B®x K—— F.

Then h induces an isomorphism between Cp(K Qk B) = A® B°P and Cg(B Qk
K) = C4(B) ®k Endvect, (B) ~ M, (C4(B)).
(ii) Taking dimg in (i), we get [A: K|[B : K] = [B : K|?[Ca(B) : K].
(iii) If C4(B) is non-simple, then M,,(Cx(B)) ~ C4(B) @k M, (K) is also non-simple,
which contradicts (i).
(iv) Clearly we have B C C4(C4a(B)). However, we have [C4(Ca(B)) : K] = m =
A :
[B: K] by (ii), so the equality holds. Finally, C(C4(B)) = Ca(B)NC4(Ca(B)) =
CA(B)N B = C(B).
]

We use this theorem to study splittings of CSAs. Let A be a CSA over K and L/K a
field extension contained in A. We say that L is a special subfield of A if L = C4(L) holds.
In this case A splits over L since

L®x A~ M,(Ca(L)) = M,(L)

by (i) of the centralizer theorem, where n = [L : K]. The following theorem says that any
splitting occurs essentially in this way.

Theorem 3.3. Let A be a CSA over K and L/K a field extension contained in A. If A
splits over L, then there is a CSA B over K with A ~ B such that B contains a special
subfield isomorphic to L. Moreover, such B is unique up to isomorphism.

Lemma 3.4. Let A be a CSA over K and L/K a field extension contained in A. Then the
following are equivalent:

(i) L is a special subfield of A.
(i) [A: K] =[L: K]?.

Proof. Since L C C'4(L), the claim follows from (ii) of the centralizer theorem. O

Proof of Theorem 3.3. The uniqueness of B follows from [B : K] = [L : K]?. Let us
prove the existence. Set [A: K] =n? and [L : K] = d. Since A splits over L, we have

L®kg A~ M,(L) C Endveet, (L¥") =: R.
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Let us prove that B := Cr(A)°P satisfies the required condition. First we see that B is a
CSA by the centralizer theorem. We have A°P ~ B°P because
R®g AP ~ M, (CR(A))
by (i) of the centralizer theorem. Finally, L is a special subfield of B since
[R: K] n2d? o
B K|l=—== =d
[ ] [A: K] n?

by (ii) of the centralizer theorem. ]

4. EXISTENCE OF A SEPARABLE SPLITTING FIELD
Theorem 4.1. Any CSA over K splits over some finite separable extension of K.

In other words, we have
Br(K)= |J Br(L/K)
LeAk

where Ay is the set of finite Galois extensions of K contained in K.

Lemma 4.2. Let D be a CDA over K and L/K a field extension contained in D. Then
the following are equivalent:
(i) L is a special subfield of D.
(ii) D splits over L.
(iii) L is a mazimal subfield of D.

Proof. First we prove (1) <= (ii). We already know (i) = (ii). If (ii) holds, then D ®x L
is isomorphic to a matrix algebra over L. On the other hand, the centralizer theorem shows
that
D®yg L~ M,(Cp(L))

and that Cp(L) is a CDA over L. Therefore we get L = Cp(L), that is, (i) holds.

Next we prove (i) <= (iii). Suppose that (i) holds. If E/L is a field extension contained
in D, then we have E C Cp(L) = L, so (iii) holds. Conversely, if (i) does not hold, then we
can form a non-trivial field extension L[z]/L contained D by choosing z € Cp(L)\ L. O

Lemma 4.3. Let D be a CDA over K. If D # K, then there is a non-trivial separable
extension L/K contained in D.

Proof. Tt suffices to show that if K[x]/K is purely inseparable for all x € D\ K then D = K.
We may assume that K is an infinite field of characteristic p > 0. Our hypothesis implies
DP" Cc K for some r > 1.

Now let Xp be the ring scheme over K representing the functor

Alg; — Ring; R— R®x D

and Z its closed subscheme representing R — R ®p K. Note that the underlying K-scheme
of Xp is isomorphic to A"; where [D : K| = n?. Since K is infinite, K-rational points are
dense in Xp, so the morphism

(—)pr : Xp = Xp
factors through Z. Considering K-valued points we get M,,(K)?" € K and hencen = 1. [
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Proof of Theorem 4.1. Let D be a CDA over K and set [D : K] = n? It suffices to
show that there is a separable extension L/K contained in D such that [L : K] = n. We
inductively construct pairs (K;, D;) where K;/K is a separable extension and D; is a CDA
over K; such that K C K; C D; C D, [D; : K|[K; : K] = n% Set D; = D and K; = K.
Suppose that (D;, K;) is defined. If [K; : K] = n then we are done. Otherwise, there is a
non-trivial separable extension L/K; contained in D; by Lemma 4.3. Then set K;y; = L
and D;11 = Cp(K;4+1). It is clear that this process terminates and hence we eventually get
a desired subfield. O

5. BRAUER GROUPS AND GALOIS COHOMOLOGY

Let K be a field and L/K a finite Galois extension with Galois group G. For any finite
dimensional K-algebra A, its base change L ®x A has a semilinear action of G given by
olx®a)=0(z)®a.

Theorem 5.1 (Galois descent). A — L ®k A gives an equivalence of categories

Finite dimensional ~ Finite dimensional L-algebras
K-algebras with a semilinear G-action ’

Corollary 5.2. A— L®g A gives an equivalence of categories
( n?-dimensional CSAs over K ) o~y ( L-algebras isomorphic to M, (L) )

which split over L with a semilinear G-action

Let B, (L/K) denote the set of isomorphism classes of objects in the category on the left.
We will describe this set by classifying semilinear G-actions on M, (L).

First we note that the automorphism group of the L-algebra M, (L) is PGL,, (L) (acting
by g-x = grg~!) by the Skolem-Noether theorem. Let m,: M, (L) — M,(L) be the K-
linear map given by applying ¢ to each matrix components. Given a semilinear action of G
on M, (L), we can write o - * = m,(goxg, ") for a unique g, € PGL,(L). The map

¢: G —PGL,(L); o~ g,
gives a 1-cocycle:
p(or) = (o) - op(T).
Conversely, any 1-cocycle ¢: G — PGL,, (L) defines a semilinear action of G on M, (L) by
oz = me(p(e) Lap(o ).
One can check that two cocycles give isomorphic actions if and only if they are cohomologous.
We have proved the following theorem.

Theorem 5.3. There is a canonical isomorphism p,: B,(L/K) = H(G,PGL,(L)) of
pointed sets.

Now we use the short exact sequence
1—L* - GL,(L) - PGL,(L) = 1

of non-abelian G-modules. Since L* C C(GL, (L)), we get an exact sequence

HY(G,GL, (L)) — H'(G,PGL,(L)) & H2(G, L*).
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We have H!(G, GL, (L)) by Hilbert’s theorem 90 and hence we get a monomorphism

tn: Bu(L/K) 2% HY(G,PGL, (L)) <> H(G, L*).
Lemma 5.4. Let A and B be CSAs over K which split over L. Set [A : K| = m? and
[B: K| =n2% Then tymn([A @K B]) = tm([A]) + tn([B]).

Proof. One can easily check that p,,,([AQk B]) = pm([4]) ® pn([B]), where ® on the right
hand side is induced by the Kronecker product ®: PGL,,(L) x PGL, (L) — PGLy,,,(L).
Now consider the following commutative diagram with exact rows:

1—— L% x L —— GLyy (L) X GLy (L) — PGLy,, (L) x PGL,, (L) — 1

I | I

1 Lx GLyn(L) —————— PGLypp (L) ———— 1.

This yields the commutative diagram

HY(G,PGLy (L)) x HY(G, PGL, (L)% H2(G, L*) x H2(G, L*)

| | A

HY(G,PGLy(L))C H*(G,L*)

and hence the result. O

This lemma implies that the following diagram is commutative, where the vertical map
is given by [A] — [M,,(A)]:

By (L) K)“—"— H2(G, L")

|

B (L/K).

Since Br(L/K) ~ J,, B,(L/K), we get a monomorphism ¢: Br(L/K) — H?*(G,L*). More-
over, Lemma 5.4 implies that ¢ is a group homomorphism.

Theorem 5.5. +: Br(L/K) — H?*(G,L*) is an isomorphism.

Proof. 1t suffices to show that any element of H*(G, L*) comes from H'(G,PGL, (L)) for
some n > 1. Let ¢: G x G — L* be a 2-cocycle. Let V be a L-vector space with basis
{e; | 0 € G} and define an L-linear map ¢(0): V. — V; e; — ¢(0,7)esr. Then ¢ gives a
1-cocycle G — PGL(V):

p(o7) = p(0) - op(T).
One can easily check that d[¢] = [¢]. O

Example 5.6. We have Br(R) = Br(C/R) ~ H?(Gal(C/R),C*). Since Gal(C/R) is cyclic,
this is isomorphic to H?(Gal(C/R),C*) ~ R* /Nm¢,r(C*) ~ Z/2. Actually, one can check
that Br(R) = {[R], [H]}.

Example 5.7. For a prime power g and n > 1, we have Br(Fgn /F,) ~ H?(Gal(Fgn /Fq),F o).
Since Fyn is finite, we have h(F,) = 1 and hence # Br(Fgn /Fy) = #H'(Gal(Fgn /F,), Fy5) =
1 by Hilbert’s theorem 90. Therefore Br(F,) = 0.
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6. BRAUER GROUP OF LOCAL FIELDS

Let K be a non-archimedean local field with valuation vg. Let Ok be the ring of integers
of K, mg its maximal ideal and k = Ok /mg. We prove the following theorem.

Theorem 6.1. Br(K) = Br(K"/K), i.e. any CSA over K splits over some finite unram-
ified extension of K.

Let D be a CDA over K and set [D : K] = n?. First we define a function vp: D —
QU {oo} by

vp(x) = %vK(det(D =, py).

Lemma 6.2. The following hold:

(i) If L/K s a field extension contained in D, then vp|r, = vy where vy, is the unique
discrete valuation extending v .
(i) vp(zy) = vp(z) + vp(y)-
(iii) vp(z +y) = minfup(z), vp(y)}-

Proof.

(i) Set d =[L : K]. Then D can be regarded an L-vector space of dimension n?/d by
left multiplication, and hence for any x € L we have
1 x-(— 1
up(@) = i (det(L =5 L)1) = Zvie(Nmy (@) = vi (@),
(ii) This is obvious from the definition.
(iii) By (iii) it suffices to prove vp(z) >0 = wvp(l + z) > 0 for z € D*. This can be
seen by applying (i) to K|[z].
]

We define Op := {z € D | vp(x) > 0} and mp := {& € D | vp(z) > 0}. Then Op is a
local Ok-algebra with maximal two-sided ideal mp, and F := Op/mp is a division algebra
over k ([F : K] < oo can be seen by lifting a basis). By Example 5.7, F' is a finite extension
field of k. We define ep to be the positive integer satisfying vp(D*) = 1Z.

Lemma 6.3. If D # K, then [Op/mp : k] > 1.

Proof. Suppose that [Op/mp : k] = 1. Choose a uniformizer m € Ok, an element I € Op
with vp(IT) = 1/e and a system of representatives S C Ok of k. Then [I'7S gives a system
of representatives of meDHj /m%ﬂ 1 where i € Z>op and 0 < j < e. Therefore any element
of Op can be written uniquely as

Snj (i Wisij) (si5 € 5).

§=0 =0
It follows that K[II] = D, which is a contradiction. O

Proof of Theorem 6.1. Suppose that D # K. By Lemma 6.3, we can choose an element
@ € F\ k which is separable over k. Let a € Op be a lift of @. Then K{a]/K is an extension
with a non-trivial residue field extension, so there is a non-trivial unramified subextension
L/K. An argument as in the proof of Theorem 4.1 shows that there is a special subfield of
D which is unramified over K. (|



